Basic Research Needs for Hydrogen Production

March 23, 2005
DOE Hydrogen Program Review Meeting
Arlington, VA

Presented by:

Thomas E. Mallouk

The Pennsylvania State University
tom@chem.psu.edu

814-863-9637

Drivers for the Hydrogen Economy

- Reduce Reliance on Fossil Fuels
- Reduce Accumulation of Greenhouse Gases

Energy Source		% of Total U.S. Energy Supply
Oil	3	39
Natural Gas	15	23
Coal	51	22
Nuclear	20	8
Hydroelectric	8	4
Biomass	1	3
Other Renewables	1	1

The Hydrogen Economy

(2015 FreedomCARTarget)

Hydrogen Production Needs

The need for carbon-free power will grow steadily in the 21st century:

M. I. Hoffert, *et al., Nature*, **1998**, *395*, 881.

Need for economic, sustainable, safe, environmentally benign hydrogen production (+40 M tons/yr for transportation)

Near- to midterm goals: Increased efficiency of fossil fuel conversion (with carbon sequestration), biomass utilization

Long term: Higher capacity, sustainable resources: renewable (solar, wind, geothermal) and nuclear hydrogen

Hydrogen Production Technology

Current status:

- Steam-reforming of oil and natural gas produces 9M tons H₂/yr
- We will need 40M tons/yr for transportation by 2015
- Requires CO₂ sequestration.

Alternative sources and technologies:

Coal:

- Cheap, lower H₂ yield/C, more contaminants
- Research and Development needed for process development, gas separations, catalysis, impurity removal.

Solar:

- Widely distributed; carbon-neutral; low energy density.
- Photovoltaic/electrolysis current standard 15% efficient
- Requires 0.03% of land area to serve transportation.
- Cost per peak watt is ~10 times too high for transportation use.

Nuclear: Abundant; carbon-neutral; long development cycle.

May be limited in long term by fuel supply, siting, security.

Reforming of fixed carbon resources Natural gas, petroleum, coal, biomass

Goals

- Improved **efficiency** of H₂ production in distributed generation (>60%)
- Low- or non-noble metal, durable catalysts Improved purity of the H₂ product (<20 ppm CO for PEM fuel cells, no S)
- Efficient, cost-effective CO₂ sequestration

Opportunities

- Recent advances in high throughput methods and rational design enable understanding and discovery of nano-scale structures and catalytic reaction mechanisms
- Synergistic loop between experiment and predictive modeling promises dramatic advances in catalysis

ERICH 184-01 184

Modeling

Materials

Separations

Combi

Solar PV/photoelectrochemistry/photocatalysis

Current Status

- Si and thin film PV Efficient ($\eta = 10-25\%$) but too expensive
- **Emerging technologies** Dye sensitized cells, organic PV (η = 2-10%)
- Nanomaterials Could lead to low cost novel devices

Priority Research Areas

- Light harvesting Use of full solar spectrum, up/down-conversion
- Photoprocesses Understand effects of structure, energy loss mechanisms, charge separation, carrier thermalization
- Chemical assembly Develop flexible processes for controlling composite material structure on the nanometer length scale
- Components New semiconductors, quantum dots, sensitizers, redox mediators, electron/hole conducting polymers, transparent conductors, liquid crystals, photonic materials...
- Catalysis and photocatalysis Low free energy losses, low cost
- Theory and modeling Understand/predict the dynamic behavior of molecules, complex photosystems, and photoelectrochemical cells
- Characterization tools for interfaces and for photoredox processes in polymers

Photovoltaic (PV) Cell Costs per Peak Watt

The Critical Need for High Efficiency

- Type I (single crystal Si) and type II (thin film PV) ride on same cost curves
- Need high efficiency ($\eta > 15\%$) at very low cost

Same analysis applies to solar H₂ production

Bio- and bio-inspired H₂ production

Current Status

- Nature makes high purity H₂ from self-repairing, non-noble metal catalysts
- Biomass fundamental limits to efficiency (< 5%)

Priority Research Areas

- Biomimetic catalysts for hydrogen "processing"
- Exploiting biodiversity for novel biocatalysts and determining mechanisms of assembly
- Coupling electrode materials to light-driven catalytic water oxidation, hydrogen production components
- Biomimetic nanostructures to organize catalytic functions of water oxidation and hydrogen production

Nuclear and solar thermal hydrogen

Current Status

Low T electrolysis, proven technology, limited net efficiency (~26% nuclear heat to H₂), production cost \$4-5/kg H₂ (nuclear), \$15/kg (solar thermal)

 High T electrolysis (HTE), thermochemical water splitting (TC) in early development phase

Scientific Challenges

- Materials and processes
 (separations) for solar and nuclear
 TC durable performance in
 extremely aggressive chemical
 environment
- Materials, high T cycles for solar thermal H₂

Hydrogen Production Summary

Challenges and Goals

- Carbon-neutral, sustainable, cost-effective production of hydrogen
- Low- and non-precious metal catalysis for low temperature water oxidationreduction reactions
- Develop components and processes for highly efficient, low cost solar cells

Understanding biological catalysis: hydrogen processing and allied enzymes

Priority Research Areas

- Nanoscale materials and nanostructured assemblies
- Catalysis
- Theory, modeling, and simulations
- Characterization and measurement techniques
- High temperature materials and separations

2003 Report - http://www.sc.doe.gov/bes/hydrogen.pdf

